Effects of Particle Properties on the Settling and Rise Velocities of Microplastics in Freshwater under Laboratory Conditions

Waldschläger & Schüttrumpf,
January, 2019

Microplastic (MP) contaminates terrestrial, aquatic and atmospheric environments. Although the number of river sampling studies with regard to MP concentrations is increasing, comprehension of the predominant transport processes of MP in the watercourse is still very limited. In order to gain a better process understanding, around 500 physical experiments are conducted to shed more light on the effects of particle shape, size and density on the rise and settling velocities of MP. The determined velocities ranged between 0.39 cm/s for polyamide fibres (settling) and 31.4 cm/s for expanded polystyrene pellets (rise). Subsequently, the determined velocities were compared with formulae from sediment transport and, as there were large differences between theoretically and experimentally determined velocities, own formulae were developed to describe settling and rise velocities of MP particles with a large variety of shapes, sizes and densities. This study shows that MP differs significantly from sediment in its behavior and that a transfer of common sediment transport formulae should be treated with caution. Furthermore, the established formulae can now be used in numerical simulations to describe the settling and rising of MP more precisely.